Search results for "Dimensional arrays"

showing 2 items of 2 documents

Time calibration of the ANTARES neutrino telescope

2011

The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ~1 ns. The methods developed to attain this level of precision are described.

Optical telescopesPhysics - Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and Detectors01 natural sciencesOptimal performanceHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Calibration procedureDimensional arraysAngular resolution[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino energyNEUTRINO TELESCOPE010303 astronomy & astrophysicsPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)Deep seaNeutrino detectorRelative timeCalibrationFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsTime calibrationPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov lightAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesScattering lengthNeutrino TelescopesOptical telescopeNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Tellurium compounds0103 physical sciencesOptical systemsCalibrationAngular resolution14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORCherenkov radiationtime calibration; neutrino telescopes; antaresANTARES010308 nuclear & particles physicsNeutrino interactionsAstronomyElementary particlesAstronomy and AstrophysicsPhotomultipliersFISICA APLICADAHigh Energy Physics::ExperimentUNDERWATER DETECTORNeutrino telescopesSYSTEM
researchProduct

From microscopic to macroscopic description of Josephson dynamics in one-dimensional arrays of weakly-coupled superconducting islands

2015

Abstract By starting from a microscopic quantum mechanical description of Josephson dynamics of a one-dimensional array of N coupled superconductors, we obtain a set of linear differential equations for the system order parameter and for additional macroscopic physical quantities. With opportune considerations, we adapt this description to two coupled superconductors, obtaining the celebrated Feynman model for Josephson junctions. These results confirm the correspondence between the microscopic picture and the semi-classical Ohta’s model adopted in describing the superconducting phase dynamics in multi-barrier Josephson junctions.

SuperconductivityJosephson effectPhysicsJosephson junctionsFeynman’s modelDynamics (mechanics)General Physics and AstronomyFeynman's modelPhysics and Astronomy(all)lcsh:QC1-999Feynman's model; Josephson junctions; One-dimensional arrays; Physics and Astronomy (all)Pi Josephson junctionOne-dimensional arrayssymbols.namesakePhysics and Astronomy (all)Classical mechanicsLinear differential equationCondensed Matter::SuperconductivitysymbolsFeynman diagramStatistical physicsQuantumlcsh:PhysicsPhysical quantity
researchProduct